EECS 440 System Design of a Search Engine

Winter 2021
Lecture 8: Mapped files, processes and threads

Nicole Hamilton
https://web.eecs.umich.edu/~nham/
nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

o U s WwWihPE

Agenda

Course details.

stat’ing a file.

Seeking.
Memory-mapping files.
Processes.

Threads.

o U s Wi PE

Agenda

Course details.

stat’ing a file.

Seeking.
Memory-mapping files.
Processes.

Threads.

details

1. Still struggling to catch up. | don’t yet have
my usual energy.

Reading lis

THE .5 o @
BELL SYSTEM
TECHNICAL JOURNAL

UNIX TIME-SHARING SYSTEM

Preface 1897
T. H. Crowley

Foreword o ALE
M. D. Mcllroy, E. N, Pinson, and B. A. Tague

The UNIX Time-Sharing System 1905
D. M. Ritchie and K. Thompson

UNIX Implementation 1931
K. Thompson

A Retrospective 1947
D. M. Ritchie

The UNIX Shell 1971
S.R. Bourne

The C Programming Language 1991

D. M. Ritchie, 5. C. Johnson, M. E Lesk, and B, W. Kernighan

Portability of C Programs and the UNIX System 2021
S. €. Johnson and D. M. Ritchie

Please read the first 3 T MER Openng St

UNIX on a Microprocessor 2087
H. Lycklama
. . .
rt I C I e S b D e n n I S A Minicomputer Satellite Processor System 2103 |
l I I a I n a y H. Lycklama and C. Christensen
Document Preparation 2115

. . B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, Jr,
R Itc h I e a n d Ke n Statistical Text Processing 2137
L. £ McMahon, L L Cherry, and R. Maorris

Language Development Tools 2155
5. C. Johnson and M. E. Lesk

I I l O l I I p S O l l . | [Conlents continued nn outside back cover)

http://emulator.pdp-11.org.ru/misc/1978.07 - Bell System Technical Journal.pdf

Image source: https://en.wikipedia.org/wiki/Dennis Ritchie#/media/File:Ken Thompson and Dennis_Ritchie.jpg

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

The first one is especially
helpful.

Here’s a better PDF.
| may test you on it.

The UNIX Time-
Sharing System

Dennis M. Ritchie and Ken Thompson
Bell Laboratories

UNIX is a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corpora-
tion PDP-11/40 and 11/45 computers. It offers a number
of features seldom found even in larger operating sys-
tems, including: (1) a hierarchical file system incorpo-
rating demountable volumes; (2) compatible file, device,
and inter-process 1'o; (1) the ability to initiate asynchro-
nous processes; (4) system command language select-
able on a per-user basis: and (5) over 100 subsystems
including a dozen languages. This paper discusses the
narure and implementation of the file system and of the
user command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, PDE-11

CR Categories: 4.30, 4.32

Copyright © 1974, Association for Computing Machinery,
Inc. General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice is
given and that reference 15 made fo the publication, to its date of
1ssue, and to the fact that repnnting pnvileges were granted by
pemuission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposivm on Operating Systems Principles, IEM Thomas
J. Watson Research Center, Yorktown Heights. New York, Octo-
ber 15-17, 1973. Authors” address: Bell Laboratonies, Murray
Hill, NJ 07974

The electronic version was recreated by Eric A. Brewer, Uni-
versity of California at Berkeley, hrewerics berkeley edu Please
notify me of any deviations from the criginal; I have left errors in
the onginal unchanged.

365 Electonic version recreated by Eric A. Brewer
University of Californis at Barkeley

https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf

1. Introduction

There have been three versions of UNTX. The earliest
version (circa 1969-70) ran on the Digital Equipment Cor-
poration PDP-7 and -9 computers. The second version ran
on the uvnprotected PDP-11/20 computer. This paper
describes only the PDP-11/40 and /45 [1] system since it is
more modem and many of the differences between it and
older UNIX systems result from redesign of features found
to be deficient or lacking.

Since PDP-11 UNIX became operational in Febmary
1971, about 40 installations have been put into service; they
are generally smaller than the system described here. Most
of them are engaged in applications such as the preparation
and fo ing of patent lications and other textual
material. the collection and processing of trouble data from
various switching machines within the Bell System. and
recording and checking telephone service orders. Our own
installation is used mainly for research in operating sys-
tems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to
demonstrate that a powerful operating system for interac-
tive use need not be expensive either in equipment or in
human effort: UNIX can run on hardware costing as little as
$40,000, and less than two man vears were spent on the
main system software. Yet UNIX contains a number of fea-
tures seldom offered even in much larger systems. It 1s
hoped. however. the users of UNI¥ will find that the most
important characteristics of the system are its simplicity,
elegance, and ease of use.

Besides the system proper. the major programs avail-
able under UNIX are: assembler, text editor based on QED
[2]. linking loader, symbolic debugger. compiler for a lan-
guage resembling BCPL [3] with types and structures (C),
interpreter for a dialect of BAsIC, text formatting program,
Fortran compiler, Snobol interpreter. top-down compiler-
compiler (TMG) [4], bottom-up compiler-compiler (YACC),
form letter generator, macro processor (M6) [5]. and per-
muted index program.

There is also a host of maintenance, utility, recreation,
and novelty programs. All of these programs were written
locally. It is worth noting that the system is totally self-sup-
porting. All UNTY software is maintained under UNTX; like-
wise, UNIX documents are generated and formatted by the
UNEX editor and text formatting program

1. Hardware and Software Environment

The poP-11/45 on which our UNIX installation is imple-
mented 15 a 16-bit word (8-bit byte) computer with 144K
bytes of core memory; UNIX occupies 42K bytes. This sys-
tem. however, includes a very large number of device driv-
ers and enjoys a generous allotment of space for I'o buffers
and system tables; a minimal system capable of running the

Communications Jaly 1974
of Volume 17
the ACM Number 7

https://people.eecs.berkeley.edu/%7Ebrewer/cs262/unix.pdf

An internal paper | wrote at
Microsoft as we prepared to
go live in January 2005.

Slightly redacted to gain
approval from Microsoft for
use in this class.

Posted to Canvas.

Dynamic Ranking

by Nicole Hamilton

Ranking is the process by which a search engine decides the order of results. This paper will outline how
that's done in a modern search engine and describe one particular algorithm and heuristic scoring
method investigated by the author.

Search engine ranking is typically considered as two parts, static ranking and dynamic ranking. Static
ranking is an estimate of the importance or quality of the page without regurd fo the query. For example,
the New York Times home page is certain to be a high-quality result if it matches at all and we can
recognize that with hand-curated list of important sites on the web, as Yahoo! did in its early days or by
using algorithmic means to identify important sites, e g, by noticing that many other sites link to it.
Other static attributes include the length of the URL, the title or the page, the domain, e.g., .gov or .edu
versus biz, whether it contains images, lots of links, invisible text, pornographic content, the vocabulary
level, spelling errors, and so on. Any data that would inform on the quality of a page independent of a
query might be a candidate to be collected for static ranking,.

Dynamic ranking, by contrast, is all about making an estimate of the quality of the page as a result for a
particular query through some means that considers both the stafic information about the page and the
quality of the match between the query and the page content. Though done by an algorithm running in a
computer, the objective is to order the results the way a human would.

Basic Dynamic Ranking

The dynamic ranker in a typical search engine is given a query string and a handle to an inverted word
index of some number of pages on the web. Typically, an entire engine is composed of thousands of
machines, e.g., m rows of n machines, each with an index covering 1/n-th of the pages known to the
engine. As queries arrive from the web service front end, a row is selected, perhaps randomly or by
queue length, and the query is broadcast to all the machines in that row. The results from the entire row
are collected and top results merged together into a final list

The dynamic ranker compiles the query, searches the index for matching pages and refurns a list of the n
best pages, each with a score representing its estimated quality as aresult. It may also be instrumented to
return various levels of debug information, e.g., to allow the scoring calculation be re-run off-line,
including redoing it with different scoring parameters.

The query string is a canonicalized form of whatever the user has typed. In Japanese and other Asian
languages, the queries are commonly word-broken, e.g, #1% #iE# becomes HE+ 4+ iHE,
literally, Chita peninsula road. In Western languages, a naive word-breaker simply breaks on and
discards most punctuation and folds the character set by discarding accents and lower-casing the
characters to match the way words are typically indexed.

Typically, the front end will also have prepended some market-specific augmentation string onto the
canonicalized query, e.g., to specify that Japanese language pages are preferred in the Japanese market.

N o v AW

Agenda

stat’ing a file.

Seeking.
Memory-mapping files.
Processes.

. Threads.

#include <sys/stat.h>

int stat(const char *pathname, struct stat *statbuf);
int fstat(int fildes, struct stat *buf);

fstat() returns information about a file associated with an open file
descriptor in a stat structure defined in <sys/stat.h>.

struct stat {

dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */

mode_t st_mode; /* File type and mode */

nlink t st nlink; /* Number of hard links */

uid_t st _uid; /* User ID of owner */

gid t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */

blksize_t st_blksize; /* Block size for filesystem I/0 */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */

/* Since Linux 2.6, the kernel supports nanosecond
precision for the following timestamp fields.
For the details before Linux 2.6, see NOTES. */

struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st mtime st _mtim.tv_sec
#define st _ctime st _ctim.tv_sec

s

The st_mode field tells what this thing is.

struct stat {

dev_t st_dev; /* ID of device containing file */

A o— —i-RO+ AE—Thode—humber—tf———

mode_t st_mode; /* File type and mode */

nIink_t sSt_nlink, 7 Number of hard I1nks */

uid_t st _uid; /* User ID of owner */

gid t st_gid; /* Group ID of owner */

dev t cf_r*dp\/: /* Device ID (i-F cppr'in'l -Fj_le) */

off_t st_size; /* Total size, in bytes *
“brksizet—stbiksize;— 7/ Biock—Sizefor—fitesystem I/0 */

blkcnt_% st:blocks;

/*

Number of 512B blocks allocated */

/* Since Linux 2.6, the kernel supports nanosecond
precision for the following timestamp fields.
For the details before Linux 2.6, see NOTES. */

struct timespec st_atim;
struct timespec st_mtim;
struct timespec st_ctim;

#define st _atime st _atim.tv_
#define st mtime st mtim.tv_
#define st _ctime st _ctim.tv_

s

/*
/*
/*

sec
sec
sec

Time of last access */
Time of last modification */
Time of last status change */

/* Backward compatibility */

// Linux stat command to retrieve pathname type

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <iostream>
using namespace std;

const char *Filetype(mode t mode)

{
switch (mode & S_IFMT)

{
case S _TFSOCK:

return "socket";
case S _TFLNK:

return "symbolic link";
case S TFREG:

return "regular file";
case S _TFBLK:

return "block device";
case S _TFDIR:

return "directory";
case S _TFCHR:

return "character device";
case S_TFIFO:

return "FIFO";
default:

return "unknown";

$./stat c* debug

catmt.cpp type = regular file, size 2798

catmt.sln type = regular file, size = 1059
catmt.vcxproj type = regular file, size = 5446
catmt.vcxproj.filters type = regular file, size = 944
CreateProcess.cpp type = regular file, size = 822
CreateProcess.sln type = regular file, size = 1437
CreateProcess.vcxproj type = regular file, size = 5461

CreateProcess.vcxproj.filters type = regular file, size

debug type = directory, size = 0
$

959

int main(int argc, char **argv)

if (argc < 2)
{
cerr << "Usage: stat pathnames" << endl;
return 1;
}
for ((int i =1; i < argc; i++)
{

struct stat statbuf;
if (!stat(argv[i], &statbuf))

cout << argv[i] << " type = " << Filetype(statbuf.st mode)
<< ", size = " << statbuf.st _size << endl;
else
cerr << "stat of " << argv[i] << " failed, errno = " << errno << endl;

N o v s

Agenda

. Seeking.
Memory-mapping files.
Processes.

. Threads.

Seeking

As we read or write a file, 0 Bytestream
we generally think of that starts at
starting at the beginning, 0 and runs

then reading or writing

from there. the end of

the file.
We have a current

location that follows us.

We can reset that
position by seeking.

Iseek()

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

Iseek() repositions the file offset of the open file description associated with the file
descriptor fd to the argument offset according to the directive whence as follows:

SEEK_SET Offset is set to offset bytes.
SEEK_CUR Current location plus offset.
SEEK_END Size of the file plus offset.

off _tis a signed type. Return value off t =-1 indicates failure and errno gives the
reason.

17

$ head -1 LinuxSeekRead.cpp

// Simple Linux file seek and read example.

$ g++ LinuxSeekRead.cpp -o LinuxSeekRead

$./LinuxSeekRead

Usage: LinuxSeekRead filename position bytes

$./LinuxSeekRead LinuxSeekRead.cpp 2 30; echo
Simple Linux file seek and re

$

If you can seek and read,
you can seek and write.

$ head -1 LinuxSeekWrite.cpp
// Simple Linux file seek and write example.
$ g++ LinuxSeekWrite.cpp -o LinuxSeekWrite
$./LinuxSeekWrite

Usage: LinuxSeekWrite filename position

$ echo Hello world how are you > foobar

$./LinuxSeekWrite foobar 6

friend

$ cat foobar

Hello friend

oW are you

$

Seeking past the end

What do you expect should happen if you
seek past the end?

How about if you’re WAY past the end?

$ echo hello world > foobar
$ 1s -1 foobar

-rWXrwxrwx 3 nicole nicole 12 Jan 24 12:50 foobar

$./LinuxSeekWrite foobar 1000000

This is way past the end.

$ 1s -1 foobar

-rwxrwxrwx 3 nicole nicole 1000026 Jan 24 12:50
$ od -c foobar

0000000 h e 1 1 o] W o] r 1
0000020 \©0 \©0 \0 \0 \0o \0o \0 \o \o \o
*

36411600 T h i i w a
3641120 t . \n
3641132

$

foobar

d \n \@ \0 \o \o
\e \@ \e \o \o \o

y

Sparse files

Both Linux and 0 If you read
Windows seamlessly from a hole,
support sparse files. — you get 0.
These are files with
holes in them where
there's no actual

data.

Holes take no actual

space on disk. ‘

Agenda

5. Memory-mapping files.
6. Processes.
7. Threads.

24

Problem with read and write

You have to pick a buffer size and deal with the added

complexity of scanning data that might cross a
read/write buffer boundary.

Example: A simple “wc” (word count) example counts
words, breaking on white space.

Mapped files

™~
\.

Map a whole or part of a
file into your address
space.

You get a pointer to where
it's been mapped and
from there you treat it like
a big array of chars.

Reading or writing the file
only requires
dereferencing a pointer
into the map.

The operating system's
paging system will
populate the map as you
touch locations.

Your address space

Your file within
the file system

26

#include <sys/mman.h>

void *mmap(void *addr, size t length, int prot, int flags,
int fd, off _t offset);

mmap() creates a new mapping in the virtual address space of the calling process.

The starting address for the new mapping can be specified in addr but is usually left as
the nullptr. The length argument specifies the length of the mapping (which must be
greater than 0).

If addr is NULL, then the kernel chooses the (page-aligned) address
at which to create the mapping.

The prot argument describes the desired memory protection of the
mapping, rwx.

flags indicate sharing options.

27

$ head -1 LinuxWcMap.cpp

// Linux word-count using the mapped file support.
$ g++ LinuxWcMap.cpp -o LinuxWcMap
$./LinuxWcMap Linux*.cpp

346 LinuxCatMT.cpp

117 LinuxForkExec.cpp

594 LinuxGetSsl.cpp

397 LinuxGetUrl.cpp

75 LinuxHelloMT. cpp

460 LinuxListDirectory.cpp

305 LinuxPipe.cpp

201 LinuxSeekRead.cpp

162 LinuxSeekWrite.cpp

325 LinuxSignalDtor.cpp

298 LinuxSignalHandler.cpp

994 LinuxTinyServer.cpp

1087 LinuxTinySsl1lServer.cpp

208 LinuxWcMap.cpp

173 LinuxWcStd. cpp

5742 Total

$

// Linux word-count using the mapped file support.
// Nicole Hamilton nham@umich.edu

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <iostream>
using namespace std;

size t FileSize(int)

{
struct stat fileInfo;

fstat(f, &fileInfo);
return fileInfo.st size;

}

int main(int argc, char **argv)

{
int total = 0;

for ((int i =1; i < argc; 1i++)
{

int words = 0;

int £ = open(argv[i], O_RDONLY);

29

if (f1=-1)
{

size t fileSize = FileSize(f);

char *map = (char *)mmap(nullptr, fileSize,
PROT_READ, MAP_PRIVATE, f, 0);

if (map != MAP_FAILED)
{
bool midWord = false;
char *end = map + fileSize;

for (char *c = map; ¢ < end; c++)
switch (*c)
{
case :
case '\t':
case '\n':
case '\r':
if (midWord)
{
midWord = false;
words++;
}
break;
default:
midWord = true;

}

if (midword)
words++;

}

30

if (F1=-1)

{

size t fileSize = FileSize(f);

[

char *map = (char *)mmap(nullptr, fileSize,]

PROT_READ, MAP_PRIVATE, f, 0);

if (map !'= MAP_FAILED)

{

bool midWord = false;

char *end = map + fileSize;

for (char *c = map;
switch (*c)
{
case '
case '\t':
case '\n':
case '\r':

Cc < end;

if (midword)

{

midWord =

words++;

}

break;
default:

false;

midWord = true;

}

if (midword)
words++;

}

C++)

More overhead in the setup but a simpler
inner loop.

The void * returned by mmap() can be cast to
anything you like.

Here, I've cast it to a simple char *.

But I could cast it to pointer to a very complex
struct, e.g.,

mystruct *s = (mystruct *)mmap(..);

31

close(f);

cout << words << "\t" << argv[1] << endl;
total += words;

}
}

if (argc > 2)
cout << total << "\t" << "Total" << endl;

}

32

6. Processes.
7. Threads.

Agenda

33

3.
4.

5.

The Process Model

Each process is protected from other processes.
Owns resources:
a. Memory (instructions, stack, data)

b. Open handles to files, pipes, semaphores,
etc.

Can also share resources, e.g., blocks of memory.
Has “state” information:

a. Current directory

b. Environment variables

c. One or more threads of execution

One-way inheritance to children.

Process creation

. When you type a command into a Unix shell, it
creates a child process to run that command.

. The child process is traditionally created by a fork()
+ exec().

. fork() creates an exact duplicate of the calling
process and returns O to the child and the process
id of the child to the parent.

. exec() overlays the current process with a new
executable image, but retaining any open handles.

Linux fork()

Creates a child copy of the current process.
Returns O to the child, process ID to the parent.

Typically followed by an exec() in the child to overwrite
the child process with a new executable file.

Multiple versions of exec() give various options, e.g.,
search path, etc.

Wait on the process ID for the child to complete.

Accomplished by sharing VM page table entries, marking
them all read-only, then using copy-on-write when either
process makes a change.

$ g++ LinuxForkExec.cpp -o LinuxForkExec
$./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc

38 117 861 LinuxForkExec.cpp
child has exited with status = ©
$

#include <sys/types.h>
#include <unistd.h>

pid t fork(void);

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to
as the parent process.

The child process and the parent process run in separate memory spaces.
At the time of fork() both memory spaces have the same content.

38

#include <sys/types.h>
#include <unistd.h>

pid t fork(void);

The child process is an exact duplicate of the parent process except for the
following points:

1. The child has its own unique process ID.
2. The child's parent process ID is the same as the parent's process ID.

3. The child does not inherit its parent's memory locks, timers, pending
signals and outstanding asynchronous /0.

39

#include <unistd.h>

extern char **environ;

int
int
int
int
int
int

execl(const char *path, const char *arg, ..., NULL */);
execlp(const char *file, const char *arg,

/* (char *) NULL */);
execle(const char *path, const char *arg,

/*, (char *) NULL, char * const envp[] */);
execv(const char *path, char *const argv[]);
execvp(const char *file, char *const argv[]);
execvpe(const char *file, char *const argv[],

char *const envp[]);

The exec() family of functions replaces the current process image with a new process
image.

The initial argument for these functions is the name of a file that is to be executed.

40

#include <sys/wait.h>

pid t waitpid(pid _t pid, int *stat loc, int options);

The waitpid() function suspends execution of the calling thread until child
process terminates then returns information about its exit status.

41

$ g++ LinuxForkExec.cpp -o LinuxForkExec
$./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc

38 117 861 LinuxForkExec.cpp
child has exited with status = ©
$

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <iostream>
using namespace std;

int main(int argc, char **argv)

if (--argc == 0)
{
cerr << "Usage: CreateProcess command arguments" << endl;
return 1;
}

pid_t processId = fork();
if (processId)
{
// parent process
cout << "parent waiting for child" << endl;
int waitStatus;
waitpid(processId, &waitStatus, 0);

cout << "child has exited with status = " << WEXITSTATUS(waitStatus)
<< endl;
}
else
{
// child process
argv++;

cout << "child starting " << *argv << endl;
execvp(*argv, argv);
cout << "this never prints" << endl;

}

7. Threads.

Agenda

44

Threads vs. Processes

Processes provide Threads provide concurrency
concurrency between within an application:
applications: 1. Very low cost to spawn.

1. High startup costs. 2. Only a scheduler entry is
2. One-way inheritance. created.

3. Lots of “firewalling.” 3. Everything else is shared.
4. Errant apps can’t 4. No protection between

scribble on others. threads.

What is a thread?

A simple flow of control that can be separately scheduled.
Its “state” consists of:
1. Aninstruction pointer,
A stack,
A register set,

Its scheduling priority,

Al S

Any semaphores it owns.

The operating system

Virtual memory, scheduling, file system,

i/o devices
Process 1 Process 2
Memory Memory
image, open image, open

files, current
directory, a
running
program.

files, current
directory, a
running
program.

Process n

Memory
image, open
files, current
directory, a
running
program.

47

Shared process
Memory image, open files, current directory,
a running program, argc, argv, envp

Thread 1

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread 2

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread n

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

48

Processes provide concurrency
between applications.

High startup costs.
One-way inheritance.
Lots of “firewalling.”

Errant apps can’t scribble on
others.

The operating system

Process
1

Process
2

Process
n

49

Threads provide concurrency
within an application:

Very low cost to spawn.

Only a scheduler entry is
created.

Everything else is shared.

No protection between
threads.

A process
Thread Thread
1 2

Thread
n

50

A thread is simple flow of
control that can be separately
scheduled.

A process
Thread Thread
1 2

Thread
n

51

A thread’s “state” consists of:

1.

2.

3.

An instruction pointer,

A stack,

A register set,

Its scheduling priority, and

Any semaphores it owns.

A process
Thread Thread
1 2

Thread
n

52

Every other thread within the
process shares:

1.

Memory (instructions and
data),

Open handles to files,
processes, pipes, etc.,

Current directory, and

Environment variables.

A process
Thread Thread
1 2

Thread
n

53

A child thread begins
completely asynchronously
unless you create it in a
suspended state.

If you have an SMP, the kernel
may transparently run any
given thread on any given
processor.

Usually there’s “affinity” for
the last processor a thread on
which a thread ran.

A process
Thread Thread
1 2

Thread
n

54

The argument for threads

Allows overlapped activities.
Slow activities like I/O can be moved off the critical path.

Just because I/0 has stalled doesn't mean you can't do other
things while you wait.

Much lighter cost to create a thread than to create a process.

Lower context switching cost when the scheduler picks a new
thread.

Much less cost to share objects between threads because
they all share the same memory space.

$ head -1 LinuxHelloMT.cpp

// Simple multi-threaded hello world program.

$ g++ LinuxHelloMT.cpp -pthread -o LinuxHelloMT
$./LinuxHelloMT

Starting child

Waiting for child

Hello from the child!

Child has exited

$

#include <pthread.h>

int pthread create(pthread t *thread, const pthread attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread join(pthread_t thread, void **retval);

The pthread_create() function starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the sole argument
of start_routine().

The pthread_join() function waits for the thread specified by thread to terminate. If
that thread has already terminated, then pthread_join() returns immediately.

57

// Simple multi-threaded Linux hello world program.

#include <stdlib.h>
#include <pthread.h>
#include <iostream»>
using namespace std;

void *Hello(void *p)
{

cout << "Hello from the child!" << endl;

}

int main(int argc, char **argv)

{

cout << "Starting child" << endl;
pthread_t child;

pthread create(&child, nullptr, Hello, nullptr);

cout << "Waiting for child" << endl;
pthread join(child, NULL);

cout << "Child has exited" << endl;

}

58

Agenda

8. Bonus: Producer/consumer relationships

59

Producer-Consumer relationships

Basic notion: Two threads that cooperate so that each
consumes what the other produces.

Must share data, locking it before any access.

Sleeping when waiting for input.

Example

A multi-threaded cat utility that uses one thread to read input
and one to write output.

1. Activity A consumes empty buffers and produces full buffers.
2. Activity B consumes full buffers and produces empty buffers.

3. A pool of buffers is used to minimize blocking.

T

A B

R

Producer-Consumer Strategy

When an activity needs input, When an activity has output,
1. It locks the input list. 1. It locks the output list,
2. Ifthe input list is not empty then 2. Puts the item on the list,
It takes an item and releases the lock. signals “data available”
else and releases the lock.

It clears the “data available” event,
Releases the lock,

Sleeps on “data available

Starts over at the top.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

sem_init() initializes an unnamed semaphore.

#include <pthread.h>

int pthread mutex_ lock(pthread mutex t *mutex);
int pthread mutex_trylock(pthread mutex_ t *mutex);
int pthread mutex_unlock(pthread mutex_ t *mutex);

pthread_mutex_lock, pthread _mutex_trylock, pthread_mutex_unlock —
lock and unlock a mutex

#include <semaphore.h>
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

sem_wait, sem_timedwait, sem_trywait allow you to lock a
semaphore.

#include <semaphore.h>

int sem _post(sem_t *sem);

sem_post() unlocks a semaphore.

$ head -1 LinuxCatMT.cpp
// Linux multi-threaded cat routine.
$ g++ LinuxCatMT.cpp -pthread -o LinuxCatMT
$ wc LinuxCatMT.cpp
135 346 2688 LinuxCatMT.cpp
$./LinuxCatMT < LinuxCatMT.cpp | wc
135 346 2688

$

// Linux multi-threaded cat routine.

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <cassert>

struct Buffer
{
char Block[1024];
ssize_t Length;

}s

template< typename T > struct Node
{
Node *next;
T Data;

Node() : next(nullptr)

{
}
}s

template< typename T > class SharedList

{

private:

Node< T > *top, *bottom;
sem_t available;
pthread_mutex_t lock;

public:

SharedList() : top(nullptr), bottom(nullptr)
{
pthread _mutex_init(&lock, nullptr);

// Mac 0SX: available = sem_open("/semaphore", O_CREAT, 0644, 1));
sem_init(&available, 0, 0);

}

~SharedList()
{
pthread_mutex_destroy(&lock);
sem_destroy(&available);

}

Node< T > *Get()
{
Node< T > *aj;
sem_wait(&available);
pthread_mutex_lock(&lock);
a = top;
assert(a);
if ((top = a->next) == nullptr
bottom = nullptr;
a->next = nullptr;
pthread_mutex_unlock(&lock);
return a;

}

void Put(Node< T > *a)

{
pthread _mutex_lock(&lock);
if (bottom)

bottom = bottom->next = 3;
else

top = bottom = a;
sem_post(&available);
pthread_mutex_unlock(&lock);

}

SharedList< Buffer > Empty, Full;

void *Reader(void *p)
{
Node< Buffer > *e;
ssize_t length;

do
{
e = Empty.Get();
e->Data.Length = read(0, e->Data.Block, sizeof(e->Data.Block));
length = e->Data.Length; /* Why? */
Full.Put(e);
}
while (length > 0);

}

void Writer(void)
{
Node< Buffer > *f;
ssize_t length;

while (f = Full.Get(), f->Data.Length > @)
{
write(1, f->Data.Block, f->Data.Length);
Empty.Put(f);
}

int main(int argc, char **argv)
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for (int i = 5; i--;)
Empty.Put(new Node< Buffer >);

pthread_t child;

/* Spawn the reader as a child thread. */
pthread create(&child, nullptr, Reader, nullptr);

/* Do the writing in this thread. */
Writer();

}

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 8: Mapped files, processes and threads
	Agenda
	Agenda
	details
	Reading list
	Slide Number 6
	Slide Number 7
	Agenda
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Agenda
	Seeking
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Seeking past the end
	Slide Number 22
	Sparse files
	Agenda
	Problem with read and write
	Mapped files
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Agenda
	The Process Model
	Process creation
	Linux fork()
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Agenda
	Threads vs. Processes
	What is a thread?
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	The argument for threads
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Agenda
	Producer-Consumer relationships
	Example
	Producer-Consumer Strategy
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72

