
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 8: Mapped files, processes and threads

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. stat’ing a file.
3. Seeking.
4. Memory-mapping files.
5. Processes.
6. Threads.

2

Agenda

1. Course details.
2. stat’ing a file.
3. Seeking.
4. Memory-mapping files.
5. Processes.
6. Threads.

3

details
1. Still struggling to catch up. I don’t yet have

my usual energy.

4

Reading list

Please read the first 3
main articles by Dennis
Ritchie and Ken
Thompson.

5

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf

Image source: https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

http://emulator.pdp-11.org.ru/misc/1978.07_-_Bell_System_Technical_Journal.pdf
https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Ken_Thompson_and_Dennis_Ritchie.jpg

6

The first one is especially
helpful.
Here’s a better PDF.
I may test you on it.

https://people.eecs.berkeley.edu/~brewer/cs262/unix.pdf

https://people.eecs.berkeley.edu/%7Ebrewer/cs262/unix.pdf

7

An internal paper I wrote at
Microsoft as we prepared to
go live in January 2005.

Slightly redacted to gain
approval from Microsoft for
use in this class.

Posted to Canvas.

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.

8

9

#include <sys/stat.h>

int stat(const char *pathname, struct stat *statbuf);
int fstat(int fildes, struct stat *buf);

fstat() returns information about a file associated with an open file
descriptor in a stat structure defined in <sys/stat.h>.

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */

/* Since Linux 2.6, the kernel supports nanosecond
precision for the following timestamp fields.
For the details before Linux 2.6, see NOTES. */

struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec
};

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512B blocks allocated */

/* Since Linux 2.6, the kernel supports nanosecond
precision for the following timestamp fields.
For the details before Linux 2.6, see NOTES. */

struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec
};

The st_mode field tells what this thing is.

// Linux stat command to retrieve pathname type

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <iostream>
using namespace std;

const char *Filetype(mode_t mode)
{
switch (mode & S_IFMT)

{
case S_IFSOCK:

return "socket";
case S_IFLNK:

return "symbolic link";
case S_IFREG:

return "regular file";
case S_IFBLK:

return "block device";
case S_IFDIR:

return "directory";
case S_IFCHR:

return "character device";
case S_IFIFO:

return "FIFO";
default:

return "unknown";
}

}

13

$./stat c* debug
catmt.cpp type = regular file, size = 2798
catmt.sln type = regular file, size = 1059
catmt.vcxproj type = regular file, size = 5446
catmt.vcxproj.filters type = regular file, size = 944
CreateProcess.cpp type = regular file, size = 822
CreateProcess.sln type = regular file, size = 1437
CreateProcess.vcxproj type = regular file, size = 5461
CreateProcess.vcxproj.filters type = regular file, size = 959
debug type = directory, size = 0
$

int main(int argc, char **argv)
{
if (argc < 2)

{
cerr << "Usage: stat pathnames" << endl;
return 1;
}

for (int i = 1; i < argc; i++)
{
struct stat statbuf;
if (!stat(argv[i], &statbuf))

cout << argv[i] << " type = " << Filetype(statbuf.st_mode)
<< ", size = " << statbuf.st_size << endl;

else
cerr << "stat of " << argv[i] << " failed, errno = " << errno << endl;

}
}

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.

15

Seeking

As we read or write a file,
we generally think of
starting at the beginning,
then reading or writing
from there.

We have a current
location that follows us.

We can reset that
position by seeking.

16

Bytestream
that starts at
0 and runs
the end of
the file.

0

17

#include <sys/types.h>
#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

lseek() repositions the file offset of the open file description associated with the file
descriptor fd to the argument offset according to the directive whence as follows:

SEEK_SET Offset is set to offset bytes.
SEEK_CUR Current location plus offset.
SEEK_END Size of the file plus offset.

off_t is a signed type. Return value off_t = -1 indicates failure and errno gives the
reason.

lseek()

18

$ head -1 LinuxSeekRead.cpp
// Simple Linux file seek and read example.
$ g++ LinuxSeekRead.cpp -o LinuxSeekRead
$./LinuxSeekRead
Usage: LinuxSeekRead filename position bytes
$./LinuxSeekRead LinuxSeekRead.cpp 2 30; echo
Simple Linux file seek and re
$

Linux

If you can seek and read,
you can seek and write.

19

20

$ head -1 LinuxSeekWrite.cpp
// Simple Linux file seek and write example.
$ g++ LinuxSeekWrite.cpp -o LinuxSeekWrite
$./LinuxSeekWrite
Usage: LinuxSeekWrite filename position
$ echo Hello world how are you > foobar
$./LinuxSeekWrite foobar 6
friend
$ cat foobar
Hello friend
ow are you
$

Linux

Seeking past the end

What do you expect should happen if you
seek past the end?

How about if you’re WAY past the end?

21

22

$ echo hello world > foobar
$ ls -l foobar
-rwxrwxrwx 3 nicole nicole 12 Jan 24 12:50 foobar
$./LinuxSeekWrite foobar 1000000
This is way past the end.
$ ls -l foobar
-rwxrwxrwx 3 nicole nicole 1000026 Jan 24 12:50 foobar
$ od -c foobar
0000000 h e l l o w o r l d \n \0 \0 \0 \0
0000020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
*
3641100 T h i s i s w a y p a s t
3641120 t h e e n d . \n
3641132
$

Linux

Sparse files

Both Linux and
Windows seamlessly
support sparse files.

These are files with
holes in them where
there's no actual
data.

Holes take no actual
space on disk.

If you read
from a hole,
you get 0.

0

23

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.

24

Problem with read and write

You have to pick a buffer size and deal with the added
complexity of scanning data that might cross a
read/write buffer boundary.

Example: A simple “wc” (word count) example counts
words, breaking on white space.

25

Mapped files
Map a whole or part of a
file into your address
space.

You get a pointer to where
it's been mapped and
from there you treat it like
a big array of chars.

Reading or writing the file
only requires
dereferencing a pointer
into the map.

The operating system's
paging system will
populate the map as you
touch locations.

26

Your address space Your file within
the file system

27

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags,
int fd, off_t offset);

mmap() creates a new mapping in the virtual address space of the calling process.
The starting address for the new mapping can be specified in addr but is usually left as
the nullptr. The length argument specifies the length of the mapping (which must be
greater than 0).

If addr is NULL, then the kernel chooses the (page-aligned) address
at which to create the mapping.

The prot argument describes the desired memory protection of the
mapping, rwx.

flags indicate sharing options.

28

$ head -1 LinuxWcMap.cpp
// Linux word-count using the mapped file support.
$ g++ LinuxWcMap.cpp -o LinuxWcMap
$./LinuxWcMap Linux*.cpp
346 LinuxCatMT.cpp
117 LinuxForkExec.cpp
594 LinuxGetSsl.cpp
397 LinuxGetUrl.cpp
75 LinuxHelloMT.cpp
460 LinuxListDirectory.cpp
305 LinuxPipe.cpp
201 LinuxSeekRead.cpp
162 LinuxSeekWrite.cpp
325 LinuxSignalDtor.cpp
298 LinuxSignalHandler.cpp
994 LinuxTinyServer.cpp
1087 LinuxTinySslServer.cpp
208 LinuxWcMap.cpp
173 LinuxWcStd.cpp
5742 Total
$

// Linux word-count using the mapped file support.
// Nicole Hamilton nham@umich.edu

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <iostream>
using namespace std;

size_t FileSize(int f)
{
struct stat fileInfo;
fstat(f, &fileInfo);
return fileInfo.st_size;
}

int main(int argc, char **argv)
{
int total = 0;

for (int i = 1; i < argc; i++)
{
int words = 0;

int f = open(argv[i], O_RDONLY);

29

if (f != -1)
{
size_t fileSize = FileSize(f);

char *map = (char *)mmap(nullptr, fileSize,
PROT_READ, MAP_PRIVATE, f, 0);

if (map != MAP_FAILED)
{
bool midWord = false;
char *end = map + fileSize;

for (char *c = map; c < end; c++)
switch (*c)

{
case ' ':
case '\t':
case '\n':
case '\r':

if (midWord)
{
midWord = false;
words++;
}

break;
default:

midWord = true;
}

if (midWord)
words++;

}

30

if (f != -1)
{
size_t fileSize = FileSize(f);

char *map = (char *)mmap(nullptr, fileSize,
PROT_READ, MAP_PRIVATE, f, 0);

if (map != MAP_FAILED)
{
bool midWord = false;
char *end = map + fileSize;

for (char *c = map; c < end; c++)
switch (*c)

{
case ' ':
case '\t':
case '\n':
case '\r':

if (midWord)
{
midWord = false;
words++;
}

break;
default:

midWord = true;
}

if (midWord)
words++;

}

31

More overhead in the setup but a simpler
inner loop.

The void * returned by mmap() can be cast to
anything you like.

Here, I’ve cast it to a simple char *.

But I could cast it to pointer to a very complex
struct, e.g.,

mystruct *s = (mystruct *)mmap(…);

close(f);
cout << words << "\t" << argv[i] << endl;
total += words;
}

}

if (argc > 2)
cout << total << "\t" << "Total" << endl;

}

32

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.

33

34

The Process Model
1. Each process is protected from other processes.
2. Owns resources:

a. Memory (instructions, stack, data)
b. Open handles to files, pipes, semaphores,

etc.
3. Can also share resources, e.g., blocks of memory.
4. Has “state” information:

a. Current directory
b. Environment variables
c. One or more threads of execution

5. One-way inheritance to children.

Process creation

1. When you type a command into a Unix shell, it
creates a child process to run that command.

2. The child process is traditionally created by a fork()
+ exec().

3. fork() creates an exact duplicate of the calling
process and returns 0 to the child and the process
id of the child to the parent.

4. exec() overlays the current process with a new
executable image, but retaining any open handles.

35

Linux fork()
1. Creates a child copy of the current process.

2. Returns 0 to the child, process ID to the parent.

3. Typically followed by an exec() in the child to overwrite
the child process with a new executable file.

4. Multiple versions of exec() give various options, e.g.,
search path, etc.

5. Wait on the process ID for the child to complete.

6. Accomplished by sharing VM page table entries, marking
them all read-only, then using copy-on-write when either
process makes a change.

37

$ g++ LinuxForkExec.cpp -o LinuxForkExec
$./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc
38 117 861 LinuxForkExec.cpp
child has exited with status = 0
$

38

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

fork() creates a new process by duplicating the calling process. The new
process is referred to as the child process. The calling process is referred to
as the parent process.

The child process and the parent process run in separate memory spaces.
At the time of fork() both memory spaces have the same content.

39

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

The child process is an exact duplicate of the parent process except for the
following points:

1. The child has its own unique process ID.

2. The child's parent process ID is the same as the parent's process ID.

3. The child does not inherit its parent's memory locks, timers, pending
signals and outstanding asynchronous I/O.

40

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ..., NULL */);
int execlp(const char *file, const char *arg, ...

/* (char *) NULL */);
int execle(const char *path, const char *arg, ...

/*, (char *) NULL, char * const envp[] */);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execvpe(const char *file, char *const argv[],

char *const envp[]);

The exec() family of functions replaces the current process image with a new process
image.

The initial argument for these functions is the name of a file that is to be executed.

41

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The waitpid() function suspends execution of the calling thread until child
process terminates then returns information about its exit status.

42

$ g++ LinuxForkExec.cpp -o LinuxForkExec
$./LinuxForkExec wc LinuxForkExec.cpp
parent waiting for child
child starting wc
38 117 861 LinuxForkExec.cpp
child has exited with status = 0
$

#include <sys/types.h>
#include <unistd.h>
#include <sys/wait.h>
#include <iostream>
using namespace std;

int main(int argc, char **argv)
{
if (--argc == 0)

{
cerr << "Usage: CreateProcess command arguments" << endl;
return 1;
}

pid_t processId = fork();
if (processId)

{
// parent process
cout << "parent waiting for child" << endl;
int waitStatus;
waitpid(processId, &waitStatus, 0);
cout << "child has exited with status = " << WEXITSTATUS(waitStatus)

<< endl;
}

else
{
// child process
argv++;
cout << "child starting " << *argv << endl;
execvp(*argv, argv);
cout << "this never prints" << endl;
}

}

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.

44

45

Threads vs. Processes
Processes provide
concurrency between
applications:

1. High startup costs.

2. One-way inheritance.

3. Lots of “firewalling.”

4. Errant apps can’t
scribble on others.

Threads provide concurrency
within an application:

1. Very low cost to spawn.

2. Only a scheduler entry is
created.

3. Everything else is shared.

4. No protection between
threads.

46

What is a thread?

A simple flow of control that can be separately scheduled.

Its “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority,

5. Any semaphores it owns.

47

The operating system
Virtual memory, scheduling, file system,
i/o devices

Process 1

Memory
image, open
files, current
directory, a
running
program.

Process 2

Memory
image, open
files, current
directory, a
running
program.

Process n

Memory
image, open
files, current
directory, a
running
program.

…

48

Shared process
Memory image, open files, current directory,
a running program, argc, argv, envp

Thread 1

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread 2

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

Thread n

Instruction
pointer,
register set,
stack pointer,
Scheduling
priority, locks
held

…

49

The operating system

Process
1

Process
2

Process
n

…

Processes provide concurrency
between applications.

High startup costs.

One-way inheritance.

Lots of “firewalling.”

Errant apps can’t scribble on
others.

50

A process

Thread
1

Thread
2

Thread
n

Threads provide concurrency
within an application:

Very low cost to spawn.

Only a scheduler entry is
created.

Everything else is shared.

No protection between
threads.

…

51

A process

Thread
1

Thread
2

Thread
n

A thread is simple flow of
control that can be separately
scheduled.

…

52

A process

Thread
1

Thread
2

Thread
n

A thread’s “state” consists of:

1. An instruction pointer,

2. A stack,

3. A register set,

4. Its scheduling priority, and

5. Any semaphores it owns.

…

53

A process

Thread
1

Thread
2

Thread
n

Every other thread within the
process shares:

1. Memory (instructions and
data),

2. Open handles to files,
processes, pipes, etc.,

3. Current directory, and

4. Environment variables.

…

54

A process

Thread
1

Thread
2

Thread
n

A child thread begins
completely asynchronously
unless you create it in a
suspended state.

If you have an SMP, the kernel
may transparently run any
given thread on any given
processor.

Usually there’s “affinity” for
the last processor a thread on
which a thread ran.

…

55

The argument for threads

1. Allows overlapped activities.
2. Slow activities like I/O can be moved off the critical path.
3. Just because I/O has stalled doesn't mean you can't do other

things while you wait.
4. Much lighter cost to create a thread than to create a process.
5. Lower context switching cost when the scheduler picks a new

thread.
6. Much less cost to share objects between threads because

they all share the same memory space.

56

$ head -1 LinuxHelloMT.cpp
// Simple multi-threaded hello world program.
$ g++ LinuxHelloMT.cpp -pthread -o LinuxHelloMT
$./LinuxHelloMT
Starting child
Waiting for child
Hello from the child!
Child has exited
$

57

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg);

int pthread_join(pthread_t thread, void **retval);

The pthread_create() function starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the sole argument
of start_routine().

The pthread_join() function waits for the thread specified by thread to terminate. If
that thread has already terminated, then pthread_join() returns immediately.

58

// Simple multi-threaded Linux hello world program.

#include <stdlib.h>
#include <pthread.h>
#include <iostream>
using namespace std;

void *Hello(void *p)
{
cout << "Hello from the child!" << endl;
}

int main(int argc, char **argv)
{
cout << "Starting child" << endl;
pthread_t child;

pthread_create(&child, nullptr, Hello, nullptr);

cout << "Waiting for child" << endl;
pthread_join(child, NULL);

cout << "Child has exited" << endl;
}

Agenda

1. Course details.
2. Homework 1.
3. stat’ing a file.
4. Seeking.
5. Memory-mapping files.
6. Processes.
7. Threads.
8. Bonus: Producer/consumer relationships

59

Producer-Consumer relationships

1. Basic notion: Two threads that cooperate so that each
consumes what the other produces.

2. Must share data, locking it before any access.

3. Sleeping when waiting for input.

61

Example
A multi-threaded cat utility that uses one thread to read input
and one to write output.

1. Activity A consumes empty buffers and produces full buffers.

2. Activity B consumes full buffers and produces empty buffers.

3. A pool of buffers is used to minimize blocking.

A B

62

Producer-Consumer Strategy
When an activity needs input,
1. It locks the input list.
2. If the input list is not empty then

It takes an item and releases the lock.
else

It clears the “data available” event,
Releases the lock,
Sleeps on “data available
Starts over at the top.

When an activity has output,
1. It locks the output list,
2. Puts the item on the list,

signals “data available”
and releases the lock.

sem_init() initializes an unnamed semaphore.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_unlock —
lock and unlock a mutex

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

sem_wait, sem_timedwait, sem_trywait allow you to lock a
semaphore.

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

sem_post() unlocks a semaphore.

#include <semaphore.h>

int sem_post(sem_t *sem);

67

$ head -1 LinuxCatMT.cpp
// Linux multi-threaded cat routine.
$ g++ LinuxCatMT.cpp -pthread -o LinuxCatMT
$ wc LinuxCatMT.cpp
135 346 2688 LinuxCatMT.cpp
$./LinuxCatMT < LinuxCatMT.cpp | wc

135 346 2688
$

// Linux multi-threaded cat routine.

#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#include <cassert>

struct Buffer
{
char Block[1024];
ssize_t Length;
};

template< typename T > struct Node
{
Node *next;
T Data;

Node() : next(nullptr)
{
}

};

template< typename T > class SharedList
{
private:

Node< T > *top, *bottom;
sem_t available;
pthread_mutex_t lock;

public:

SharedList() : top(nullptr), bottom(nullptr)
{
pthread_mutex_init(&lock, nullptr);
// Mac OSX: available = sem_open("/semaphore", O_CREAT, 0644, 1));
sem_init(&available, 0, 0);
}

~SharedList()
{
pthread_mutex_destroy(&lock);
sem_destroy(&available);
}

Node< T > *Get()
{
Node< T > *a;
sem_wait(&available);
pthread_mutex_lock(&lock);
a = top;
assert(a);
if ((top = a->next) == nullptr)

bottom = nullptr;
a->next = nullptr;
pthread_mutex_unlock(&lock);
return a;
}

void Put(Node< T > *a)
{
pthread_mutex_lock(&lock);
if (bottom)

bottom = bottom->next = a;
else

top = bottom = a;
sem_post(&available);
pthread_mutex_unlock(&lock);
}

};

SharedList< Buffer > Empty, Full;

void *Reader(void *p)
{
Node< Buffer > *e;
ssize_t length;

do
{
e = Empty.Get();
e->Data.Length = read(0, e->Data.Block, sizeof(e->Data.Block));
length = e->Data.Length; /* Why? */
Full.Put(e);
}

while (length > 0);
}

void Writer(void)
{
Node< Buffer > *f;
ssize_t length;

while (f = Full.Get(), f->Data.Length > 0)
{
write(1, f->Data.Block, f->Data.Length);
Empty.Put(f);
}

}

int main(int argc, char **argv)
{
SharedList< Buffer > empty, full;
// put 5 empty nodes on the empty list;
for (int i = 5; i--;)

Empty.Put(new Node< Buffer >);

pthread_t child;

/* Spawn the reader as a child thread. */
pthread_create(&child, nullptr, Reader, nullptr);

/* Do the writing in this thread. */
Writer();
}

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 8: Mapped files, processes and threads
	Agenda
	Agenda
	details
	Reading list
	Slide Number 6
	Slide Number 7
	Agenda
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Agenda
	Seeking
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Seeking past the end
	Slide Number 22
	Sparse files
	Agenda
	Problem with read and write
	Mapped files
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Agenda
	The Process Model
	Process creation
	Linux fork()
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Agenda
	Threads vs. Processes
	What is a thread?
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	The argument for threads
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Agenda
	Producer-Consumer relationships
	Example
	Producer-Consumer Strategy
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72

